metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(1*H*-imidazole- κN^3)(2-phenyl-propanedioato- $\kappa^2 O^1, O^3$)nickel(II)

Kou-Lin Zhang,^a Guo-Wang Diao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 12 October 2010; accepted 14 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.086; data-to-parameter ratio = 18.0.

In the title complex, $[Ni(C_9H_6O_4)(C_3H_4N_2)_4]$, the Ni^{II} ion is O,O'-chelated by the phenylmalonato ligand and coordinated by four imidazole ligands in a slightly distorted octahedral geometry. In the crystal structure, symmetry-related molecules are linked by $N-H\cdots O$ hydrogen bonds, generating a three-dimensional network.

Related literature

For the cobalt(II) analog, see: Zhang et al. (2007).

Experimental

Crystal data $[Ni(C_9H_6O_4)(C_3H_4N_2)_4]$ $M_r = 509.18$ Orthorhombic, $P2_12_12_1$

ı	=	8.5358	(8) Å
5	=	13.314	8 (12) Å
2	=	20.6996	6 (19) Å

V = 2352.6 (4) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.812, T_{max} = 0.881

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.041 \\ wR(F^2) &= 0.086 \\ S &= 0.98 \\ 5516 \text{ reflections} \\ 307 \text{ parameters} \\ \text{H-atom parameters constrained} \end{split}$$

 $\mu = 0.87 \text{ mm}^{-1}$ T = 293 K $0.25 \times 0.20 \times 0.15 \text{ mm}$

15962 measured reflections 5516 independent reflections 4013 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$

 $\begin{array}{l} \Delta \rho_{max} = 0.41 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.31 \ e \ \mathring{A}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ 2344 \ Friedel pairs \\ \text{Flack parameter: } 0.082 \ (13) \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots O3^{i}$	0.88	2.06	2.943 (3)	176
$N4-H4\cdots O1^{ii}$	0.88	1.97	2.839 (3)	168
N6-H6···O2 ⁱⁱⁱ	0.88	1.90	2.774 (3)	172
$N8 - H8 \cdots O4^{iv}$	0.88	1.85	2.718 (3)	169

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}$, -y + 1, $z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5153).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, K.-L., Kuai, H.-W., Liu, W.-L. & Diao, G.-W. (2007). J. Mol. Struct. 831, 114–118.

supplementary materials

Acta Cryst. (2010). E66, m1430 [doi:10.1107/S1600536810041577]

Tetrakis(1*H*-imidazole- κN^3)(2-phenylpropanedioato- $\kappa^2 O^1, O^3$)nickel(II)

K.-L. Zhang, G.-W. Diao and S. W. Ng

Comment

We have previously reported the crystal structure of the tetrakis(imidazole) adduct of cobalt(II) phenylmalonate. The structure features the carboxylate-chelated cobalt(II) atom bonded to four *N*-heterocycles; each of these has a nitrogen-donor site that enables the octahedrally coordinated mononuclear molecule to connect with each other to form a three-dimensional network (Zhang *et al.*, 2007). The nickel analog (Fig. 1) is isostructural, the two compounds crystallizing with similar unit cell dimensions.

Experimental

Imidazole (0.339 g. 0.56 mmol) was dissolved in methanol (10 ml) and to the solution was added nickel nitrate hexahydrate (0.480 g, 1.65 mmol) dissolved in water (6 ml). To the clear solution was added phenylmalonic acid (0.300 g, 1.65 mmol) and sodium hydroxide (0.120 g, 3.30 mmol) dissolved in water (10 ml). The filtered solution was set aside for the growth of green crystals over several days; yield 50%. CH&N elemental analysis. Calc. for $C_{21}H_{22}N_8NiO_4$: C 49.53, H 4.36, N 22.00%. Found: C 49.61, H 4.49, N 21.91%.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$.

The imidazolium H-atoms were similarly treated (N–H 0.88 Å; $U_{iso}(H)$ 1.2 $U_{eq}(N)$).

The crystal has several voids but these are too small (20\AA^3) to accomodate a solvent molecule.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Ni(C_3H_4N_2)_4(C_9H_6O_4)$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Tetrakis(1*H*-imidazole- κN^3)(2-phenylpropanedioato- $\kappa^2 O^1, O^3$)nickel(II)

Crystal data

[Ni(C9H6O4)(C3H4N2)4]	F(000) = 1056
$M_r = 509.18$	$D_{\rm x} = 1.438 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2481 reflections
a = 8.5358 (8) Å	$\theta = 2.6 - 21.7^{\circ}$
b = 13.3148 (12) Å	$\mu = 0.87 \text{ mm}^{-1}$
c = 20.6996 (19) Å	T = 293 K
$V = 2352.6 (4) \text{ Å}^3$	Prism, green
Z = 4	$0.25\times0.20\times0.15~mm$

Data collection

5516 independent reflections
4013 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.051$
$\theta_{\text{max}} = 27.8^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
$h = -11 \rightarrow 11$
$k = -17 \rightarrow 17$
$l = -19 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.086$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0326P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.98	$(\Delta/\sigma)_{\rm max} = 0.001$
5516 reflections	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
307 parameters	$\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$
0 restraints	Absolute structure: Flack (1983), 2344 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.082 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	Uiso*/Ueq
Ni1	0.66167 (4)	0.40568 (3)	0.336577 (18)	0.02636 (10)
01	0.8851 (2)	0.40575 (17)	0.29819 (9)	0.0324 (4)

O2	1.0679 (2)	0.37546 (16)	0.22649 (12)	0.0433 (6)
03	0.5823 (2)	0.41866 (15)	0.24132 (9)	0.0323 (5)
O4	0.6203 (3)	0.43579 (17)	0.13674 (11)	0.0515 (7)
N1	0.6652 (3)	0.24683 (16)	0.33088 (13)	0.0338 (6)
N2	0.5969 (3)	0.0939 (2)	0.30389 (16)	0.0597 (9)
H2	0.5388	0.0432	0.2908	0.072*
N3	0.4310 (2)	0.4058 (2)	0.37002 (11)	0.0301 (5)
N4	0.1739 (3)	0.4091 (2)	0.36620 (12)	0.0388 (6)
H4	0.0782	0.4110	0.3504	0.047*
N5	0.6703 (3)	0.56328 (16)	0.33579 (12)	0.0312 (5)
N6	0.7570 (3)	0.7169 (2)	0.32201 (14)	0.0424 (8)
H6	0.8180	0.7667	0.3098	0.051*
N7	0.7489 (3)	0.4034 (2)	0.43160 (11)	0.0324 (6)
N8	0.8143 (4)	0.4576 (2)	0.52810 (14)	0.0500 (8)
H8	0.8359	0.4991	0.5599	0.060*
C1	0.9291 (3)	0.3761 (2)	0.24304 (17)	0.0300(7)
C2	0.8045 (3)	0.3333 (2)	0.19607 (15)	0.0343 (8)
H2A	0.7662	0.2713	0.2161	0.041*
C3	0.6602 (3)	0.4033 (2)	0.19068 (14)	0.0315 (6)
C4	0.8732 (3)	0.3022 (2)	0.13164 (16)	0.0361 (8)
C5	0.8607 (4)	0.2032 (3)	0.11128 (17)	0.0468 (9)
Н5	0.8055	0.1569	0.1360	0.056*
C6	0.9301 (5)	0.1738 (3)	0.0545 (2)	0.0635 (12)
H6A	0.9202	0.1075	0.0410	0.076*
C7	1.0126 (5)	0.2392 (4)	0.0179 (2)	0.0683 (13)
H7	1.0602	0.2173	-0.0199	0.082*
C8	1.0264 (5)	0.3368 (3)	0.0363 (2)	0.0643 (12)
H8A	1.0831	0.3817	0.0110	0.077*
C9	0.9556 (4)	0.3689 (3)	0.09264 (17)	0.0471 (9)
H9	0.9632	0.4360	0.1047	0.057*
C10	0.5503 (4)	0.1886 (2)	0.31110 (17)	0.0450 (9)
H10	0 4488	0.2108	0 3031	0.054*
C11	0 7919 (4)	0.1839 (2)	0.3360 (2)	0.0493 (9)
H11	0.8920	0.2036	0 3484	0.059*
C12	0.7502 (4)	0.0899 (3)	0.3204 (2)	0.0626 (12)
H12	0.8139	0.0333	0 3208	0.075*
C13	0.3064(3)	0 4087 (2)	0 33245 (16)	0.0361 (7)
H13	0.3106	0.4102	0.2876	0.043*
C14	0.3722(3)	0 4050 (3)	0.43166 (15)	0.0391 (7)
H14	0.4318	0 4040	0 4693	0.047*
C15	0 2137 (4)	0 4060 (3)	0 42918 (17)	0 0446 (8)
H15	0 1454	0 4048	0 4642	0.054*
C16	0.7835 (4)	0.6195 (2)	0.31334 (16)	0.0383 (8)
H16	0.8728	0.5941	0.2935	0.046*
C17	0.5650 (4)	0.6304 (2)	0.36077 (17)	0.0427 (9)
H17	0.4705	0.6132	0.3802	0.051*
C18	0.6178 (4)	0.7249 (2)	0.35329 (17)	0.0426 (9)
H18	0.5690	0.7837	0.3668	0.051*
C19	0.7768 (4)	0.4830 (3)	0.46802 (16)	0.0392 (8)

supplementary materials

H19	0.7709	0.5489	0.4533	0.047*
C20	0.7710 (5)	0.3241 (3)	0.47194 (18)	0.0585 (12)
H20	0.7590	0.2571	0.4604	0.070*
C21	0.8133 (6)	0.3571 (3)	0.53140 (18)	0.0682 (13)
H21	0.8368	0.3179	0.5673	0.082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02413 (16)	0.02630 (16)	0.02864 (19)	-0.00065 (17)	-0.00168 (18)	-0.00153 (19)
01	0.0262 (10)	0.0397 (11)	0.0312 (11)	-0.0002 (10)	0.0005 (9)	-0.0080 (11)
02	0.0255 (11)	0.0565 (15)	0.0479 (15)	0.0019 (10)	0.0034 (11)	-0.0166 (12)
03	0.0296 (10)	0.0422 (13)	0.0252 (11)	0.0041 (10)	0.0009 (9)	-0.0002 (10)
O4	0.0486 (14)	0.0700 (17)	0.0359 (14)	0.0183 (12)	0.0071 (12)	0.0217 (12)
N1	0.0380 (13)	0.0312 (13)	0.0322 (15)	-0.0052 (12)	-0.0028 (18)	0.0004 (11)
N2	0.0581 (18)	0.0281 (14)	0.093 (3)	-0.0143 (16)	-0.0013 (17)	-0.0146 (18)
N3	0.0258 (11)	0.0332 (12)	0.0313 (14)	-0.0023 (13)	-0.0017 (11)	-0.0005 (14)
N4	0.0232 (11)	0.0497 (15)	0.0436 (15)	0.0030 (15)	-0.0003 (13)	0.0011 (15)
N5	0.0278 (12)	0.0303 (12)	0.0356 (14)	-0.0031 (10)	0.0006 (17)	-0.0003 (11)
N6	0.0387 (15)	0.0343 (15)	0.054 (2)	-0.0088 (13)	-0.0008 (14)	0.0059 (15)
N7	0.0331 (12)	0.0349 (13)	0.0291 (14)	0.0015 (13)	-0.0029 (11)	-0.0033 (15)
N8	0.064 (2)	0.053 (2)	0.0330 (18)	0.0026 (18)	-0.0074 (17)	-0.0125 (15)
C1	0.0243 (15)	0.0255 (16)	0.040 (2)	0.0061 (12)	-0.0016 (14)	-0.0010 (13)
C2	0.0326 (18)	0.0358 (17)	0.0346 (18)	-0.0004 (14)	0.0001 (15)	0.0012 (15)
C3	0.0283 (13)	0.0343 (14)	0.0319 (15)	-0.0006 (18)	0.0009 (14)	-0.0023 (15)
C4	0.0273 (16)	0.049 (2)	0.0322 (17)	0.0077 (15)	-0.0009 (14)	-0.0051 (16)
C5	0.0362 (18)	0.051 (2)	0.053 (2)	0.0041 (18)	-0.0058 (18)	-0.0053 (18)
C6	0.064 (3)	0.069 (3)	0.057 (3)	0.018 (2)	-0.007 (2)	-0.031 (2)
C7	0.075 (3)	0.088 (3)	0.042 (3)	0.032 (3)	-0.001 (2)	-0.013 (2)
C8	0.060 (3)	0.088 (3)	0.045 (3)	0.018 (2)	0.015 (2)	0.015 (2)
C9	0.052 (2)	0.048 (2)	0.042 (2)	0.0090 (17)	0.0023 (19)	0.0043 (17)
C10	0.0379 (18)	0.0350 (18)	0.062 (3)	-0.0055 (15)	0.0071 (17)	-0.0004 (17)
C11	0.0431 (19)	0.0379 (18)	0.067 (3)	0.0085 (14)	-0.018 (2)	-0.004 (2)
C12	0.056 (2)	0.0342 (19)	0.098 (4)	0.006 (2)	-0.009 (2)	-0.003 (3)
C13	0.0293 (14)	0.0416 (16)	0.0374 (17)	-0.0031 (14)	-0.0022 (14)	-0.0015 (19)
C14	0.0350 (16)	0.0509 (18)	0.0313 (17)	0.0019 (18)	-0.0008 (14)	0.0026 (18)
C15	0.0366 (16)	0.056 (2)	0.041 (2)	0.0009 (19)	0.0089 (15)	0.006 (2)
C16	0.0365 (17)	0.0314 (19)	0.047 (2)	0.0011 (13)	0.0027 (15)	-0.0013 (15)
C17	0.0347 (17)	0.0400 (18)	0.053 (2)	0.0016 (14)	0.0081 (17)	0.0003 (16)
C18	0.0430 (19)	0.0261 (16)	0.059 (3)	0.0068 (14)	0.0016 (17)	0.0031 (15)
C19	0.0401 (19)	0.044 (2)	0.034 (2)	-0.0004 (16)	-0.0038 (16)	-0.0028 (17)
C20	0.102 (3)	0.038 (2)	0.036 (2)	0.003 (2)	-0.020 (2)	0.0050 (17)
C21	0.112 (4)	0.057 (3)	0.036 (2)	0.006 (3)	-0.025 (3)	0.0050 (19)

Geometric parameters (Å, °)

Ni1—O1	2.0662 (18)	C2—C4	1.515 (4)
Ni1—N3	2.087 (2)	C2—C3	1.549 (4)
Ni1—O3	2.092 (2)	C2—H2A	0.9800

Ni1—N5	2.100 (2)	C4—C5	1.388 (5)
Ni1—N7	2.103 (2)	C4—C9	1.391 (4)
Ni1—N1	2.118 (2)	C5—C6	1.372 (5)
O1—C1	1.265 (4)	С5—Н5	0.9300
O2—C1	1.234 (3)	C6—C7	1.352 (6)
O3—C3	1.258 (3)	С6—Н6А	0.9300
O4—C3	1.245 (3)	С7—С8	1.359 (5)
N1—C10	1.316 (4)	С7—Н7	0.9300
N1—C11	1.373 (4)	C8—C9	1.382 (5)
N2—C10	1.330 (4)	C8—H8A	0.9300
N2—C12	1.353 (4)	С9—Н9	0.9300
N2—H2	0.8800	C10—H10	0.9300
N3—C13	1.318 (3)	C11—C12	1.340 (5)
N3—C14	1.371 (4)	C11—H11	0.9300
N4—C13	1.329 (3)	C12—H12	0.9300
N4—C15	1.348 (4)	С13—Н13	0.9300
N4—H4	0.8800	C14—C15	1.355 (4)
N5—C16	1.308 (4)	C14—H14	0.9300
N5—C17	1.369 (4)	C15—H15	0.9300
N6—C16	1.329 (4)	C16—H16	0.9300
N6—C18	1.357 (4)	C17—C18	1.345 (4)
N6—H6	0.8800	С17—Н17	0.9300
N7—C19	1.323 (4)	C18—H18	0.9300
N7—C20	1.359 (4)	С19—Н19	0.9300
N8—C19	1.328 (4)	C20—C21	1.356 (5)
N8—C21	1.339 (4)	С20—Н20	0.9300
N8—H8	0.8800	C21—H21	0.9300
C1—C2	1.550 (4)		
01—Ni1—N3	176 75 (9)	$C_{5}-C_{4}-C_{2}$	1198(3)
01—Ni1— 03	86 37 (7)	C9-C4-C2	122.2(3)
N3—Ni1—O3	90.39 (8)	C_{6} C_{5} C_{4}	122.2(3) 1199(4)
Ω_1 —Ni1—N5	87.95 (9)	СбС5Н5	120.1
N3—Ni1—N5	91 98 (10)	C4 - C5 - H5	120.1
Ω_3 _Ni1_N5	85 50 (9)	C7 - C6 - C5	120.1
01Ni1N7	91.88 (8)	C7-C6-H64	1193
N3_Ni1_N7	91.36 (9)	C5-C6-H6A	119.3
Ω_3 _Ni1_N7	175 72 (9)	C6-C7-C8	120.3 (4)
N5N1N7	90.54 (10)	Сб-С7-Н7	119.9
$\Omega_1 = N_1 = N_1$	90.94 (10) 88.05 (10)	C8-C7-H7	110.0
N3_Ni1_N1	91.88 (10)	$C_{3} - C_{3} - C_{3}$	119.5
Ω_{3} Ni1 N1	91.08 (10)	$C_{7} = C_{8} = C_{7}$	120.2
N5_Ni1_N1	175 40 (10)	$C_{1} = C_{2} = H_{2}$	120.2
N7Ni1N1	91 87 (10)	$C_{8} - C_{9} - C_{4}$	120.2
C1 - O1 - Ni1	128 36 (18)	C8_C9_H9	110 5
$C_3 = O_3 = N_1^{-1}$	126.90 (18)	C4_C9_H9	119.5
C_{10} N1_C11	104 6 (2)	N1_C10_N2	111.8 (3)
C10 $N1$ $N1$	107.0 (2)	N1_C10_H10	174.1
C11N1Ni1	120.0(2) 1280(2)	N_{2} C_{10} H_{10}	124.1
C_{10} N2 C_{12}	120.0(2) 107 3 (3)	112 - C10 - 1110 C12 - C11 - N1	127.1
010 -112-012	101.5 (5)	012 -011-101	110.0 (3)

supplementary materials

C10—N2—H2	126.3	C12—C11—H11	125.0
C12—N2—H2	126.3	N1—C11—H11	125.0
C13—N3—C14	104.7 (2)	C11—C12—N2	106.3 (4)
C13—N3—Ni1	124.44 (19)	С11—С12—Н12	126.8
C14—N3—Ni1	130.84 (18)	N2—C12—H12	126.8
C13—N4—C15	107.1 (2)	N3—C13—N4	112.1 (3)
C13—N4—H4	126.5	N3—C13—H13	123.9
C15—N4—H4	126.5	N4—C13—H13	123.9
C16—N5—C17	104.2 (3)	C15—C14—N3	109.3 (3)
C16—N5—Ni1	126.9 (2)	C15—C14—H14	125.4
C17—N5—Ni1	128.8 (2)	N3—C14—H14	125.4
C16—N6—C18	106.8 (3)	N4-C15-C14	106.8 (3)
C16—N6—H6	126.6	N4—C15—H15	126.6
C18—N6—H6	126.6	C14—C15—H15	126.6
C19—N7—C20	104.3 (3)	N5-C16-N6	112.7 (3)
C19—N7—Ni1	125.8 (2)	N5-C16-H16	123.7
C20—N7—Ni1	129.4 (2)	N6-C16-H16	123.7
C19—N8—C21	107.5 (3)	C18—C17—N5	110.3 (3)
C19—N8—H8	126.2	С18—С17—Н17	124.8
C21—N8—H8	126.2	N5-C17-H17	124.8
O2—C1—O1	122.5 (3)	C17—C18—N6	106.0 (3)
O2—C1—C2	118.9 (3)	C17—C18—H18	127.0
O1—C1—C2	118.5 (3)	N6	127.0
C4—C2—C3	114.1 (2)	N7—C19—N8	111.9 (3)
C4—C2—C1	112.8 (2)	N7—C19—H19	124.1
C3—C2—C1	111.7 (2)	N8—C19—H19	124.1
C4—C2—H2A	105.8	C21—C20—N7	110.1 (3)
C3—C2—H2A	105.8	C21—C20—H20	125.0
C1—C2—H2A	105.8	N7-C20-H20	125.0
O4—C3—O3	123.1 (3)	N8—C21—C20	106.2 (4)
O4—C3—C2	119.4 (3)	N8—C21—H21	126.9
O3—C3—C2	117.2 (3)	C20-C21-H21	126.9
C5—C4—C9	118.0 (3)		
O3—Ni1—O1—C1	-28.3(3)	Ni1—O3—C3—O4	-161.4(2)
N5—Ni1—O1—C1	-113.9 (3)	Ni1—O3—C3—C2	23.8 (4)
N7—Ni1—O1—C1	155.7 (3)	C4—C2—C3—O4	-6.3 (4)
N1—Ni1—O1—C1	63.9 (3)	C1—C2—C3—O4	123.0 (3)
O1—Ni1—O3—C3	15.1 (2)	C4—C2—C3—O3	168.7 (3)
N3—Ni1—O3—C3	-164.7 (2)	C1—C2—C3—O3	-61.9 (4)
N5—Ni1—O3—C3	103.4 (2)	C3—C2—C4—C5	-111.2 (3)
N1—Ni1—O3—C3	-72.8 (2)	C1—C2—C4—C5	120.0 (3)
O1—Ni1—N1—C10	-137.2 (3)	C3—C2—C4—C9	71.8 (4)
N3—Ni1—N1—C10	39.6 (3)	C1—C2—C4—C9	-57.1 (4)
O3—Ni1—N1—C10	-50.9 (3)	C9—C4—C5—C6	0.6 (5)
N7—Ni1—N1—C10	131.0 (3)	C2—C4—C5—C6	-176.6 (3)
01—Ni1—N1—C11	30.7 (3)	C4—C5—C6—C7	0.8 (6)
N3—Ni1—N1—C11	-152.6 (3)	C5—C6—C7—C8	-1.1 (7)
O3—Ni1—N1—C11	117.0 (3)	C6—C7—C8—C9	0.1 (7)
N7—Ni1—N1—C11	-61.1 (3)	C7—C8—C9—C4	1.4 (6)

O3—Ni1—N3—C13	2.8 (3)	C5—C4—C9—C8	-1.7 (5)
N5—Ni1—N3—C13	88.3 (3)	C2—C4—C9—C8	175.4 (3)
N7—Ni1—N3—C13	178.9 (3)	C11—N1—C10—N2	0.3 (4)
N1—Ni1—N3—C13	-89.2 (3)	Ni1—N1—C10—N2	170.4 (2)
O3—Ni1—N3—C14	-175.9 (3)	C12—N2—C10—N1	0.5 (4)
N5-Ni1-N3-C14	-90.4 (3)	C10-N1-C11-C12	-1.0 (4)
N7—Ni1—N3—C14	0.2 (3)	Ni1—N1—C11—C12	-171.0 (3)
N1—Ni1—N3—C14	92.1 (3)	N1-C11-C12-N2	1.3 (5)
O1-Ni1-N5-C16	3.4 (3)	C10-N2-C12-C11	-1.1 (5)
N3—Ni1—N5—C16	-173.4 (3)	C14—N3—C13—N4	-0.4 (4)
O3—Ni1—N5—C16	-83.1 (3)	Ni1—N3—C13—N4	-179.4 (2)
N7—Ni1—N5—C16	95.3 (3)	C15—N4—C13—N3	-0.2 (4)
O1—Ni1—N5—C17	-173.2 (3)	C13—N3—C14—C15	0.8 (4)
N3—Ni1—N5—C17	10.1 (3)	Ni1—N3—C14—C15	179.7 (2)
O3—Ni1—N5—C17	100.3 (3)	C13—N4—C15—C14	0.7 (4)
N7—Ni1—N5—C17	-81.3 (3)	N3-C14-C15-N4	-1.0 (4)
O1—Ni1—N7—C19	92.3 (2)	C17—N5—C16—N6	-0.3 (4)
N3—Ni1—N7—C19	-87.6 (3)	Ni1—N5—C16—N6	-177.6 (2)
N5—Ni1—N7—C19	4.4 (3)	C18—N6—C16—N5	1.1 (4)
N1—Ni1—N7—C19	-179.5 (3)	C16—N5—C17—C18	-0.5 (4)
O1—Ni1—N7—C20	-96.5 (3)	Ni1-N5-C17-C18	176.7 (2)
N3—Ni1—N7—C20	83.5 (3)	N5-C17-C18-N6	1.2 (4)
N5—Ni1—N7—C20	175.5 (3)	C16—N6—C18—C17	-1.3 (4)
N1—Ni1—N7—C20	-8.4 (3)	C20—N7—C19—N8	-0.1 (4)
Ni1—O1—C1—O2	-176.5 (2)	Ni1—N7—C19—N8	172.8 (2)
Ni1—O1—C1—C2	-0.1 (4)	C21—N8—C19—N7	0.9 (5)
O2—C1—C2—C4	-4.3 (4)	C19—N7—C20—C21	-0.6 (5)
O1—C1—C2—C4	179.1 (3)	Ni1—N7—C20—C21	-173.2 (3)
O2—C1—C2—C3	-134.4 (3)	C19—N8—C21—C20	-1.2 (6)
O1—C1—C2—C3	49.0 (4)	N7—C20—C21—N8	1.2 (6)

Hydrogen-bond	geometry	(Å,	%	
---------------	----------	-----	---	--

<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
0.88	2.06	2.943 (3)	176
0.88	1.97	2.839 (3)	168
0.88	1.90	2.774 (3)	172
0.88	1.85	2.718 (3)	169
	<i>D</i> —H 0.88 0.88 0.88 0.88	D—H H…A 0.88 2.06 0.88 1.97 0.88 1.90 0.88 1.85	D—H H···A D···A 0.88 2.06 2.943 (3) 0.88 1.97 2.839 (3) 0.88 1.90 2.774 (3) 0.88 1.85 2.718 (3)

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x-1, y, z; (iii) -x+2, y+1/2, -z+1/2; (iv) -x+3/2, -y+1, z+1/2.

Fig. 1